Problem A.25

Consider the matrices

$$\mathsf{A} = \begin{pmatrix} 1 & 4 & 1 \\ 4 & -2 & 4 \\ 1 & 4 & 1 \end{pmatrix}, \qquad \mathsf{B} = \begin{pmatrix} 1 & -2 & -1 \\ -2 & 2 & -2 \\ -1 & -2 & 1 \end{pmatrix}.$$

- (a) Verify that they are diagonalizable and that they commute.
- (b) Find the eigenvalues and eigenvectors of A and verify that its spectrum is nondegenerate.
- (c) Show that the eigenvectors of A are eigenvectors of B as well.

Solution

Notice that A and B have all real elements and are equal to their respective transposes. This means A and B are normal matrices and hence diagonalizable.

$\left[A^{\dagger},A\right]=A^{\dagger}A-AA^{\dagger}$	$\left[B^{\dagger},B ight]=B^{\dagger}B-BB^{\dagger}$
$=\widetilde{A^*}A-A\widetilde{A^*}$	$=\widetilde{B^*}B-B\widetilde{B^*}$
$=\widetilde{A}A-A\widetilde{A}$	$= \widetilde{B}B - B\widetilde{B}$
= AA - AA	= BB - BB
= 0	= 0

 $\Rightarrow A \text{ is diagonalizable.} \qquad \Rightarrow B \text{ is diagonalizable.}$

Since

$$\mathsf{AB} = \begin{pmatrix} -8 & 4 & -8\\ 4 & -20 & 4\\ -8 & 4 & -8 \end{pmatrix} = \mathsf{BA}$$

the matrices, A and B, commute, meaning they can be simultaneously diagonalized. Solve the eigenvalue problem for A.

 $Aa = \lambda a$

Bring λa to the left side and combine the terms.

$$(\mathsf{A} - \lambda \mathsf{I})\mathsf{a} = \mathsf{0} \tag{1}$$

Since $a \neq 0$, the matrix in parentheses must be singular, that is,

$$\det(\mathsf{A} - \lambda \mathsf{I}) = 0$$

$$\begin{vmatrix} 1 - \lambda & 4 & 1 \\ 4 & -2 - \lambda & 4 \\ 1 & 4 & 1 - \lambda \end{vmatrix} = 0.$$

Write out the determinant and solve the equation for λ .

$$(1-\lambda)\begin{pmatrix} -2-\lambda & 4\\ 4 & 1-\lambda \end{pmatrix} - 4\begin{pmatrix} 4 & 4\\ 1 & 1-\lambda \end{pmatrix} + 1\begin{pmatrix} 4 & -2-\lambda\\ 1 & 4 \end{pmatrix} = 0$$
$$(1-\lambda)[(-2-\lambda)(1-\lambda) - 16] - 4[4(1-\lambda) - 4] + 1[16 - (-2-\lambda)(1)] = 0$$
$$36\lambda - \lambda^3 = 0$$
$$\lambda(6+\lambda)(6-\lambda) = 0$$
$$\lambda = \{-6, 0, 6\}$$

Because there are three distinct eigenvalues, $\lambda_{-} = -6$ and $\lambda_{0} = 0$ and $\lambda_{+} = 6$, for this 3×3 matrix, there will be one eigenvector corresponding to each. This means the collection of eigenvalues (the spectrum) is nondegenerate.

To find the corresponding eigenvectors, plug λ_{-} , λ_{0} , and λ_{+} back into equation (1).

$$(A - \lambda_{-1})a_{-} = 0$$

$$(A - \lambda_{0})a_{0} = 0$$

$$(A - \lambda_{+1})a_{+} = 0$$

$$(A - \lambda_{+1})a_{+$$

$$\mathbf{a}_{-} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} a_1 \\ -2a_1 \\ a_1 \end{pmatrix} \qquad \qquad \mathbf{a}_{0} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} -a_3 \\ 0 \\ a_3 \end{pmatrix} \qquad \qquad \mathbf{a}_{+} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} a_2 \\ a_2 \\ a_2 \end{pmatrix}$$

Therefore, the eigenvectors corresponding to $\lambda_{-} = -6$ and $\lambda_{0} = 0$ and $\lambda_{+} = 6$ are respectively

$$\mathbf{a}_{-} = a_1 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$
 and $\mathbf{a}_0 = a_3 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ and $\mathbf{a}_+ = a_2 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$,

where a_1 , a_2 , and a_3 are arbitrary (due to the fact that the eigenvalue problem is homogeneous).

In order to diagonalize A, let S^{-1} be the 3×3 matrix whose columns are the eigenvectors with $a_1 = a_2 = a_3 = 1$ for simplicity.

$$\mathsf{S}^{-1} = \begin{pmatrix} 1 & -1 & 1 \\ -2 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Determine S, the similarity matrix, by finding the inverse of S^{-1} .

$$\begin{pmatrix} 1 & -1 & 1 & | & 1 & 0 & 0 \\ -2 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & | & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 1 & | & 1 & 0 & 0 \\ -2 & 0 & 1 & | & 0 & 1 & 0 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & -1 & 1 & | & 1 & 0 & 0 \\ 0 & 2 & 0 & | & -1 & 0 & 1 \\ -2 & 0 & 1 & | & 0 & 1 & 0 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & -1 & 1 & | & 1 & 0 & 0 \\ 0 & 2 & 0 & | & -1 & 0 & 1 \\ 0 & -2 & 3 & | & 2 & 1 & 0 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & -1 & 1 & | & 1 & 0 & 0 \\ 0 & 2 & 0 & | & -1 & 0 & 1 \\ 0 & 0 & 3 & | & 1 & 1 & 1 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & -1 & 1 & | & 1 & 0 & 0 \\ 0 & 2 & 0 & | & -1 & 0 & 1 \\ 0 & 0 & 3 & | & 1 & 1 & 1 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & -1 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -\frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 1 & | & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 0 & 0 & | & \frac{1}{6} & -\frac{1}{3} & \frac{1}{6} \\ 0 & 1 & 0 & | & -\frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 1 & | & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 0 & 0 & | & \frac{1}{6} & -\frac{1}{3} & \frac{1}{6} \\ 0 & 1 & 0 & | & -\frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 1 & | & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$

Consequently,

$$\mathsf{S} = \begin{pmatrix} \frac{1}{6} & -\frac{1}{3} & \frac{1}{6} \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}.$$

Compute SAS^{-1} and verify that A is diagonalizable.

.

$$SAS^{-1} = \begin{pmatrix} \frac{1}{6} & -\frac{1}{3} & \frac{1}{6} \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 & 4 & 1 \\ 4 & -2 & 4 \\ 1 & 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ -2 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} \frac{1}{6} & -\frac{1}{3} & \frac{1}{6} \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} -6 & 0 & 6 \\ 12 & 0 & 6 \\ -6 & 0 & 6 \end{pmatrix}$$
$$= \begin{pmatrix} -6 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$

Compute SBS^{-1} and verify that B is diagonalizable.

$$SBS^{-1} = \begin{pmatrix} \frac{1}{6} & -\frac{1}{3} & \frac{1}{6} \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 & -2 & -1 \\ -2 & 2 & -2 \\ -1 & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ -2 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} \frac{1}{6} & -\frac{1}{3} & \frac{1}{6} \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 4 & -2 & -2 \\ -8 & 0 & -2 \\ 4 & 2 & -2 \end{pmatrix}$$
$$= \begin{pmatrix} 4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

Are these the eigenvalues of ${\sf B}$ along the main diagonal? Let's find out.

$$\mathsf{Bb} = \mu \mathsf{b}$$

Bring $\mu \mathbf{b}$ to the left side and combine the terms.

$$(\mathsf{B} - \mu \mathsf{I})\mathsf{b} = \mathsf{0} \tag{2}$$

Since $b \neq 0,$ the matrix in parentheses must be singular, that is,

$$\det(\mathsf{B} - \mu\mathsf{I}) = 0$$
$$\begin{vmatrix} 1 - \mu & -2 & -1 \\ -2 & 2 - \mu & -2 \\ -1 & -2 & 1 - \mu \end{vmatrix} = 0.$$

$$(1-\mu)\begin{pmatrix} 2-\mu & -2\\ -2 & 1-\mu \end{pmatrix} + 2\begin{pmatrix} -2 & -2\\ -1 & 1-\mu \end{pmatrix} - 1\begin{pmatrix} -2 & 2-\mu\\ -1 & -2 \end{pmatrix} = 0$$
$$(1-\mu)[(2-\mu)(1-\mu)-4] + 2[-2(1-\mu)-2] - 1[4+(2-\mu)] = 0$$
$$-16 + 4\mu + 4\mu^2 - \mu^3 = 0$$
$$(4-\mu)(\mu+2)(\mu-2) = 0$$
$$\mu = \{-2, 2, 4\}$$

Verify that the eigenvectors of A are also those of B.

$$Ba_{-} = \begin{pmatrix} 1 & -2 & -1 \\ -2 & 2 & -2 \\ -1 & -2 & 1 \end{pmatrix} \begin{pmatrix} a_1 \\ -2a_1 \\ a_1 \end{pmatrix} = \begin{pmatrix} 4a_1 \\ -8a_1 \\ 4a_1 \end{pmatrix} = 4 \begin{pmatrix} a_1 \\ -2a_1 \\ a_1 \end{pmatrix} = 4a_{-}$$
$$Ba_{0} = \begin{pmatrix} 1 & -2 & -1 \\ -2 & 2 & -2 \\ -1 & -2 & 1 \end{pmatrix} \begin{pmatrix} -a_3 \\ 0 \\ a_3 \end{pmatrix} = \begin{pmatrix} -2a_3 \\ 0 \\ 2a_3 \end{pmatrix} = 2 \begin{pmatrix} -a_3 \\ 0 \\ a_3 \end{pmatrix} = 2a_{0}$$
$$Ba_{+} = \begin{pmatrix} 1 & -2 & -1 \\ -2 & 2 & -2 \\ -1 & -2 & 1 \end{pmatrix} \begin{pmatrix} a_2 \\ a_2 \\ a_2 \end{pmatrix} = \begin{pmatrix} -2a_2 \\ -2a_2 \\ -2a_2 \end{pmatrix} = -2 \begin{pmatrix} a_2 \\ a_2 \\ a_2 \end{pmatrix} = -2a_{+}$$

The eigenvector corresponding to $\mu_{-} = -2$ is

$$\mathsf{b}_{-} = a_2 \begin{pmatrix} 1\\1\\1 \end{pmatrix},$$

the eigenvector corresponding to $\mu_0 = 2$ is

$$\mathsf{b}_0 = a_3 \begin{pmatrix} -1\\0\\1 \end{pmatrix},$$

and the eigenvector corresponding to $\mu_+=4$ is

$$\mathsf{b}_+ = a_1 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix},$$

where a_1 , a_2 , and a_3 are arbitrary.

www.stemjock.com

Now prove it by plugging in $\mu_{-} = -2$, $\mu_{0} = 2$, and $\mu_{+} = 4$ into equation (2).

$$(B - \mu - 1)b_{-} = 0 \qquad (B - \mu 0)b_{0} = 0 \qquad (B - \mu - 1)b_{0} = 0 \qquad (B - \mu + 1)b_{+} = 0$$

$$\begin{pmatrix} 3 & -2 & -1 \\ -2 & 4 & -2 \\ -1 & -2 & 3 \end{pmatrix} \begin{pmatrix} b_{1} \\ b_{2} \\ b_{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} -1 & -2 & -1 \\ -2 & 0 & -2 \\ -1 & -2 & -1 \end{pmatrix} \begin{pmatrix} b_{1} \\ b_{2} \\ b_{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} -3 & -2 & -1 \\ -2 & -2 & -2 \\ -1 & -2 & -3 \end{pmatrix} \begin{pmatrix} b_{1} \\ b_{2} \\ b_{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 3b_{1} - 2b_{2} - b_{3} = 0 \\ -2b_{1} + 4b_{2} - 2b_{3} = 0 \\ -b_{1} - 2b_{2} + 3b_{3} = 0 \end{pmatrix} \qquad \begin{pmatrix} -b_{1} - 2b_{2} - b_{3} = 0 \\ -2b_{1} + 0b_{2} - 2b_{3} = 0 \\ -b_{1} - 2b_{2} - 3b_{3} = 0 \end{pmatrix} \qquad \begin{pmatrix} -b_{1} - 2b_{2} - b_{3} = 0 \\ -b_{1} - 2b_{2} - 3b_{3} = 0 \\ -b_{1} - 2b_{2} - 3b_{3} = 0 \end{pmatrix} \qquad \begin{pmatrix} -b_{1} - 2b_{2} - b_{3} = 0 \\ -b_{1} - 2b_{2} - 3b_{3} = 0 \\ -b_{1} - 2b_{2} - 3b_{3} = 0 \end{pmatrix} \qquad \begin{pmatrix} -b_{1} + 2b_{2} + b_{3} = 0 \\ b_{1} - 2b_{2} - 3b_{3} = 0 \\ \end{pmatrix}$$

$$\begin{pmatrix} b_{1} + 2b_{2} + b_{3} = 0 \\ -b_{1} - 2b_{2} + 3(3b_{1} - 2b_{2}) = 0 \qquad (-b_{3}) + 2b_{2} + b_{3} = 0 \\ b_{1} + 2b_{2} + b_{3} = 0 \end{pmatrix} \qquad b_{1} + 2b_{2} + 3b_{3} = 0 \end{pmatrix}$$

$$\begin{pmatrix} b_{1} + 2b_{2} + b_{3} = 0 \\ -b_{1} - 2b_{2} - 3b_{3} = 0 \\ b_{2} = b_{1} \qquad b_{1} = -b_{3} \end{pmatrix} \qquad b_{1} + 2b_{2} + b_{3} = 0 \qquad b_{1} + 2(-b_{1} - b_{3}) + 3b_{3} = 0$$

$$b_{2} = b_{1} \qquad b_{2} = 0 \qquad b_{1} + 2(-b_{1} - b_{3}) + 3b_{3} = 0$$

$$b_{2} = b_{1} \qquad b_{1} = -b_{3} \qquad b_{2} = -b_{1} - (b_{1}) = -2b_{1} \qquad b_{2} =$$

Therefore, the eigenvectors corresponding to $\mu_{-} = -2$ and $\mu_{0} = 2$ and $\mu_{+} = 4$ are respectively

$$\mathbf{b}_{-} = B_1 \begin{pmatrix} 1\\1\\1 \end{pmatrix} \quad \text{and} \quad \mathbf{b}_0 = B_2 \begin{pmatrix} -1\\0\\1 \end{pmatrix} \quad \text{and} \quad \mathbf{b}_+ = B_3 \begin{pmatrix} 1\\-2\\1 \end{pmatrix},$$

where B_1 , B_2 , and B_3 are arbitrary (due to the fact that the eigenvalue problem is homogeneous).